Phase Equilibria in the Ln₂O₃-V₂O₃-V₂O₅ (Ln=Pr, Tb, and Y) Systems at 1200 °C

Kenzo Kitayama* and Takashi Katsura

Department of Chemistry, Faculty of Science, Tokyo Institute of Technology,

Ookayama, Meguro-ku, Tokyo 152

(Received July 27, 1984)

The phase equilibria in the systems, $Pr_2O_3-V_2O_5$, $Tb_2O_3-V_2O_5$, $Tb_2O_3-V_2O_5$, and $Y_2O_3-V_2O_3-V_2O_5$, were established at 1200 °C by changing the oxygen partial pressure from -1.20 (in the CO_2) to 7.50 in $-\log{(P_{0z}/Pa)}$ for Pr_2O_3 and Tb_2O_3 systems, and from -4.32 (in the air) to 7.50 in $-\log{(P_{0z}/Pa)}$ for Y_2O_3 system. In the first system $0.81Pr_2O_3 \cdot 0.19V_2O_5$ (A) and $3Pr_2O_3 \cdot V_2O_5$ (B), in the second $0.81Tb_2O_3 \cdot 0.19V_2O_5$ (A'), and in the last one $4Y_2O_3 \cdot V_2O_5$ (A") were stable in addition to Ln_2O_3 , $LnVO_4$, $LnVO_3$, V_nO_{2n-1} (n=2-7, and Ln means Pr, Tb, and Y), and VO_2 under the present experimental conditions. On the basis of the established phase diagrams, the standard Gibbs energies (ΔG°) of reactions appeared in the systems were calculated. Compounds A, B, $PrVO_3$, A', A", and $LnVO_4$ have nonstoichiometric compositions. ΔG° values for the reactions and crystallographic values of the compounds were represented as a function of the ionic radius of lanthanoid (including Y) elements.

Phase equilibria in the Ln₂O₃–V₂O₃–V₂O₅ systems (Ln=Sm, Lu, Er, Gd, La, Nd, Tm, Eu, Yb, Dy, and Ho) at 1200 °C have been established^{1–9)} by changing the oxygen partial pressure from -4.32 to 7.50 or 9.00 in terms of $-\log (Po₂/Pa)$. The standard Gibbs energy of the reactions appeared in the established systems and the crystallographic data of the ternary compounds and the activities of the components in the solid solutions were also successfully obtained.

In the present study, Pr₂O₃, Tb₂O₃, and Y₂O₃ were chosen as Ln₂O₃. It was well known that Pr₂O₃ and Tb₂O₃ were unstable in air. They change compositions to Pr₆O₁₁ and Tb₄O₇ or other compositions depending upon the oxygen partial pressure and the temperature.10-14) Recently, the oxygen partial pressure ranges in which Pr₂O₃ and Tb₂O₃ are stable have been determined at 1000°, 1100°, and 1200°C by Sugihara. 15) According to his results, Pr₂O₃ is stable in the log Po₂ range from 4.30 to -11.00 and Tb₂O₃ in the log Po₂ range from 3.25 to −11.00 at 1200 °C. Thus the oxygen partial-pressure range in the present experiments was confined to pressures lower than 101.20 Pa (in the CO2) for both systems. On the other hand, Y2O3 is stable in air and. thus, the experimental atmosphere was extended to an air atmosphere from a CO2 atmosphere.

Livin¹⁶⁾ studied $Y_2O_3-V_2O_5$ in the temperature range from 650° to 1800 °C and found three compounds $4Y_2O_3 \cdot V_2O_5$, $5Y_2O_3 \cdot V_2O_5$, and YVO_4 with a melting point 1810 ± 25 °C. He also pointed out that the $Y_2O_3-YVO_4$ subsystem is probably pseudo-binary because of oxygen losses from the 4:1 and 5:1 phases. Brusset *et al.*¹⁷⁾ studied three systems, $Pr_2O_3-V_2O_5$, $Tb_2O_3-V_2O_5$, and $Y_2O_3-V_2O_5$, in the temperature range from 600° to 1500 °C. $4Pr_2O_3 \cdot V_2O_5$, $6Pr_2O_3 \cdot V_2O_5$, $4Tb_2O_3 \cdot V_2O_3$, $5Tb_2O_3 \cdot V_2O_5$, $4Y_2O_3 \cdot V_2O_5$, and $5Y_2O_3 \cdot V_2O_5$ were found in addition to $LnVO_4$.

In the Pr₂O₃-V₂O₃, Tb₂O₃-V₂O₃, and Y₂O₃-V₂O₃¹⁸⁾ systems, PrVO₃, TbVO₃, and YVO₃ were well known, but these systems have not yet been completely studied,

because V₂O₃ is unstable in the air. The crystallographic properties of these LnVO₃ have been investigated by McCarthy *et al.*¹⁹⁾ and Shin-ike *et al.*²⁰⁾ and it has been confirmed that these compounds are orthorhombic.

The objectives of the present experiments were: (1) to establish the detailed phase equilibria in the systems at 1200 °C in order to confirm which compounds are stable under the present experimental conditions, (2) to calculate the standard Gibbs energies of reactions which appear in the established phase diagrams, and (3) to examine the fitness of the present data on the linear relationship between ΔG° values for the reaction, LnVO₃+1/2 O₂=LnVO₄ and the ionic radius of the lanthanoid elements, including Y.

Experimental

Pr₂O₃, Tb₂O₃, and Y₂O₃ (99.9%), V₂O₅ were used as starting materials. V2O5 was prepared by heating a guaranteed grade of NH4VO3 at 500 °C in air for about 24 h. Pr2O3 and Tb₂O₃ were prepared by reducing the commercial Pr₆O₁₁ (99.9%) and Tb₄O₇ (99.9%) in an atmosphere of log (Po_2 / Pa)=-5.00 at 1200 °C for about 5 h. The hexagonal, lightgreen Pr₂O₃ and white Tb₂O₃ with C-form were confirmed by the powder X-ray diffraction method^{21,22)} and the compositions were determined to be Pr₂O_{3.00} and Tb₂O_{3.00} by EDTA titration. Desired Pr₂O₃/V₂O₅, Tb₂O₃/V₂O₅, and Y₂O₃/V₂O₅ mole ratios of samples were obtained by thoroughly mixing appropriate quantities in an agate mortar under ethyl alcohol. The mixtures, thus obtained, were treated by the same procedures in the previous paper.1) The apparatus and procedures for controlling the oxygen partial pressure and keeping a constant temperature, the method of thermogravimetry, the criterion for an equilibrium establishment, and the method of the chemical analysis for the mixtures of Y2O3 and V2O5 were the same as those described in previous reports.1,23-27) The vanadium content of the mixtures of V and Pr and of V and Tb was volumetrically determined after confirming that the consumption of the KMnO₄ standard solution by the coexisting Pr and Tb was within the experimental errors. Samples used for analysis

were prepared in the atmosphere, in which the stoichiometric V₂O₃, LnVO₃, and Ln₂O₃ were stable at 1200 °C. Pr₂O₃ and Tb₂O₃ contents were determined as a difference between the V₂O₃ weight and the total weight.

Results and Discussion

Phase Equilibria. Nine samples with Pr₂O₃/ V_2O_5 mole ratios of 85/15, 8/2, 77/23, 7/3, 65/35, 1, 4/6, 3/7, and 15/85 were prepared to be used in the thermogravimetric experiments. In Figs. la and lb the relationships between the oxygen partial pressure, $-\log (P_{O_2}/P_a)$, on the ordinate and the weight change, W_{02}/W_{T} , on the abscissa are shown as representative cases with four samples, 85/15, 77/23, 65/35, and 15/85. Here, Wo₂ is the weight gain of the samples from the reference weight in an atmosphere of log $P_{02}=-7.50$, and $W_{\rm T}$ is the calculated total weight increase of samples which might be obtainable if V2O3 in the samples at the reference state would change to V_2O_5 in the higher oxygen pressures. The W_{O_2}/W_T ratio was usually shown in the range from 0.995 to 1.00. From Fig. 1 the oxygen partial pressure in equilibrium 6.75, 4.56, 4.14, and 4.02 in -log Po₂ were found in addition to those in the V₂O₃-VO₂ subsystem.¹⁾

The identification of the phases was performed with the quenched samples using a powder X-ray diffractometer with Cu $K\alpha$ radiation. The following phases and two-phase combinations are present under the present experimental conditions: $0.81 \text{Pr}_2\text{O}_3 \cdot 0.19 \text{V}_2\text{O}_5(\text{A})$, $3 \text{Pr}_2\text{O}_3 \cdot \text{V}_2\text{O}_5(\text{B})$, $\text{Pr}_2\text{O}_3(\text{R})$, $\text{Pr}_2\text{V}_2\text{O}_3(\text{C})$, and $\text{VO}_2(\text{J})$ in addition to six compounds in the V₂O₃-VO₂ system,¹⁾ and Pr_2O_3 +A,A+B,B+PrVO₄, Pr_2O_3 +PrVO₃, A+PrVO₃, B+PrVO₃, V₂O₃+PrVO₄, V_nO_{2n-1}(n=2-7)+PrVO₄, and VO₂+PrVO₄.

Based upon the above experimental results from the thermogravimetry and the identification of phases, a phase diagram of the system at 1200 °C was drawn and is shown in Fig. 2. As is apparent from Fig. 2, 6Pr₂O₃·V₂O₅ is not stable but a new compound 3Pr₂O₃·V₂O₅(Pr₃VO₇) was found. The compounds, 3La₂O₃·V₂O₅ and 3Nd₂O₃·V₂O₅ had been found in the La₂O₃-,⁵⁾ and Nd₂O₃-system⁶⁾ which have the same phase diagram pattern as that of the present system. 3Eu₂O₃·V₂O₅ was known to be stable²⁸⁾ although it could not be found in the Eu₂O₃-V₂O₃-V₂O₅ system⁸⁾ at 1200 °C. An X-ray powder pattern of Pr₃VO₇ is similar to those of La₃VO₇ and Nd₃VO₇. The crystal system of the compounds has not been determined The spacing and relative intensities of the compound were determined and are shown in Table 1.

Compound A might be $4\text{Pr}_2\text{O}_3 \cdot \text{V}_2\text{O}_5$ reported by Brusset *et al.*¹⁷⁾ However, this compound does not have such a round mole ratio in the present case. This kind of compound has been found in La,⁵⁾ Nd,⁶⁾ Eu,⁸⁾ and Gd⁴⁾ systems, and will be found in a Tb system. It is interesting that these elements have a lower atomic

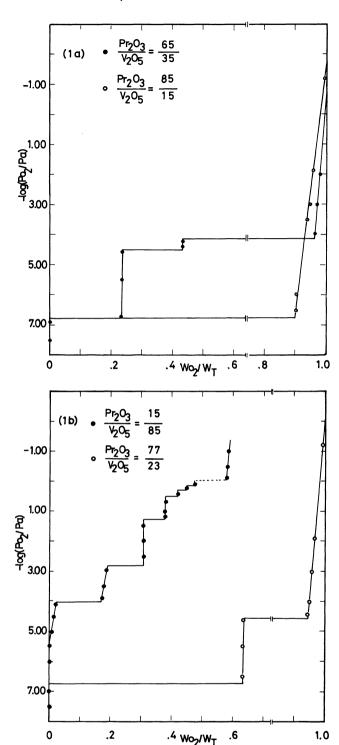


Fig. 1. The relationship between $-\log(P_{\rm O_2}/{\rm Pa})$, and the composition, $W_{\rm O_2}/W_{\rm T}$, of samples. (1a) \bullet : $\Pr_2{\rm O_3}/{\rm V_2O_5}=65/35$, \bigcirc : $\Pr_2{\rm O_3}/{\rm V_2O_5}=85/15$, (1b) \bullet : $\Pr_2{\rm O_3}/{\rm V_2O_5}=15/85$, \bigcirc : $\Pr_2{\rm O_3}/{\rm V_2O_5}=77/23$.

number in the lanthanoid elements except for Sm in which system $5\text{Sm}_2\text{O}_3 \cdot \text{V}_2\text{O}_5$ was stable at $1200\,^{\circ}\text{C}$. Since $4\text{Ln}_2\text{O}_3 \cdot \text{V}_2\text{O}_5$ was not detectable by our techniques, it might be nonstoichiometric toward the Ln_2O_3 side and mole ratio, $\text{Ln}_2\text{O}_3/\text{V}_2\text{O}_5=81/19$, might be rewritten to the ratio 4/1.

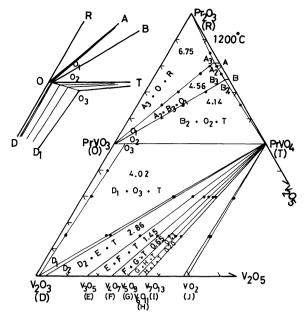


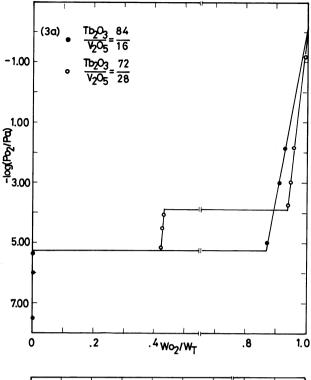
Fig. 2. Phase equilibria in the $Pr_2O_3-V_2O_3-V_2O_5$ system at 1200°C. Numerical values in the three-phase regions are the oxygen partial pressure in —log (P_{0z}/Pa) in equilibrium. Symbols are the same as those in Table 3. A tentative, enlarged diagram near $PrVO_3$ was drawn on the left side with a little exaggeration.

Table 1. Spacings and relative intensities of $3\text{Pr}_2\text{O}_3 \cdot \text{V}_2\text{O}_5 (\log(P_{\text{O}_2}/\text{Pa}) = -4.30, 47 \text{ h})$

d/Å	$I/I_{ m o}$	d/Å	$I/I_{ m o}$
3.28	.83	2.161	. 14
3.161	. 74	1.983	. 37
3.127	1.00	1.967	. 29
3.056	. 23	1.927	. 26
3.014	. 23	1.875	. 23
2.933	.40	1.718	. 17
2.808	.49	1.678	. 14
2.719	.43		

Compounds A, Pr_3VO_7 , $PrVO_4$, and $PrVO_3$ have nonstoichiometric compositions. The relationship between the composition and the oxygen partial pressure is represented by a linear equation, $N_0/N_A=a\log Po_z+b$. Here, N_0 is the mole fraction of the oxygen atom and N_A is the mole fraction of component A in the compound. The a and b values obtained from the results of the thermogravimetry are tabulated in Table 2. However, those values for $PrVO_4$ were not obtained because of the shortness of the solid-solution range.

Log P_{O_2} =-4.14 is the oxygen partial pressure in equilibrium with $Pr_3VO_7(B_2)$, $PrVO_4(T_1)$, and $PrVO_3(O_2)$, and on the other hand, $log P_{O_2}$ =-4.02 is that in equilibrium with $V_2O_3(D_1)$, $PrVO_4(T_1)$, and $PrVO_3(O_3)$. This sort of the difference of the pattern was not found in the other systems reported by us. The


X	а	b
PrVO ₃	0.0122	0.069
$0.81 \mathrm{Pr_2O_3} \cdot 0.19 \mathrm{V_2O_5}$	4.00×10^{-3}	-0.018
$3\operatorname{Pr_2O_3} \cdot \operatorname{V_2O_5}$	9.80×10^{-3}	-0.0124
TbVO_{4}	4.71×10^{-3}	2.07×10^{-3}
$0.81 { m Tb_2O_3} \cdot 0.19 { m V_2O_5}$	7.00×10^{-3}	-0.015
$\mathbf{Y_8V_2O_{17}}$	0.619	-0.124

solid-solution ranges for $PrVO_3$ with a mole ratio $Pr_2O_3/V_2O_5 \ge 1$ and that for $PrVO_3$ with a mole ratio $Pr_2O_3/V_2O_5 \le 1$ were apparently different. This phenomenum may be understood considering that $PrVO_3$ had a solid solution range toward the V_2O_3 and V_2O_5 side. A tentative phase diagram near $PrVO_3$ is depicted with a little exaggeration in the left side of Fig. 2.

Seven samples with Tb₂O₃/V₂O₅ mole ratio of 84/16, 8/2, 72/28, 65/35, 1, 3/7, and 15/85 were prepared to be used in thermogravimetric experiments. In Figs. 3a and 3b, the relationships between W_{0a} / $W_{\rm T}$ and $\log (P_{\rm O_2}/P_{\rm a})$ of samples, 84/16, 8/2, 72/28, and 15/85, are shown as representatives. Two oxygen partial pressures, 5.27 and 3.95 in $-\log P_{02}$, in equilibrium with three solid phases were obtained in addition to those in the V2O3-VO2 subsystem. A phase diagram was depicted with the results of the thermogravimetry and the identification of phases and is shown in Fig. 4. The following phases are present; $Tb_2O_3(R')$, $0.81Tb_2O_3 \cdot 0.19V_2O_5(A')$, TbVO₃ (O'), and TbVO₄(T') in addition to the compounds in the V₂O₃-VO₂ system.¹⁾ The 5Tb₂O₃. V₂O₅ was not stable. Using the quench method, the following two-phase combinations were confirmed; Tb₂O₃+A', A'+TbVO₄, A'+TbVO₃, Tb₂O₃+ TbVO₄, $V_2O_3+TbVO_3$, $TbVO_4+V_nO_{2n-1}$ (n=2-7), and TbVO₄+VO₂. The pattern of Fig. 4 is similar to those of Eu₂O₃8) and Gd₂O₃4) systems which had been established.

Compounds A' and TbVO₄ have nonstoichiometric compositions, but TbVO₃, on the other hand, is stoichiometric. a and b values for A' and TbVO₄ are shown in Table 2 together with values for other compounds.

It has been confirmed that Y_2O_3 is stable under the present experimental conditions.²⁶⁾ Seven samples with Y_2O_3/V_2O_5 mole ratios of 85/15, 8/2, 75/25, 65/35, 1, 25/75, and 1/9 were used for the establishment of the phase diagram in the thermogravimetry. The variation of the weight with log P_{O_2} for four samples, 85/15, 65/35, 1, and 1/9, were shown in Fig. 5 as representative cases. Two oxygen partial pressure, 4.62 and 3.98 in -log P_{O_2} , in equilibrium with three solid phases were found in addition to six values in the V_2O_3 - VO_2 system. Compounds $Y_2O_3(R'')$, $4Y_2O_3 \cdot V_2O_5(A'')$, $YVO_4(T'')$, and YVO_3 -

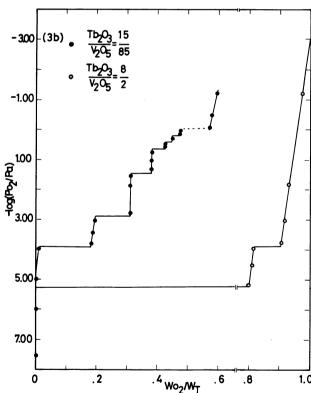


Fig. 3. The realtionship between $-\log(P_{O_2}/\mathrm{Pa})$ and the composition, W_{O_2}/W_T , of samples. (3a) \bullet : $\mathrm{Tb_2O_3}/\mathrm{V_2O_5} = 84/16$, \bigcirc : $\mathrm{Tb_2O_3}/\mathrm{V_2O_5} = 72/28$, (3b) \bullet : $\mathrm{Tb_2O_3}/\mathrm{V_2O_5} = 15/85$, \bigcirc : $\mathrm{Tb_2O_3}/\mathrm{V_2O_5} = 8/2$.

(O") were confirmed to be stable by the quench method. Two-phase combinations are: Y_2O_3+A'' , $A''+YVO_4$, $A''+YVO_3$, $Y_2O_3+YVO_3$, $YVO_3+V_2O_3$, YVO_4+V_{2n-1} (n=2-7), and VO_2+YVO_4 . The $5Y_2O_3 \cdot V_2O_5$

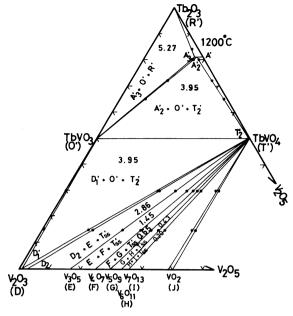
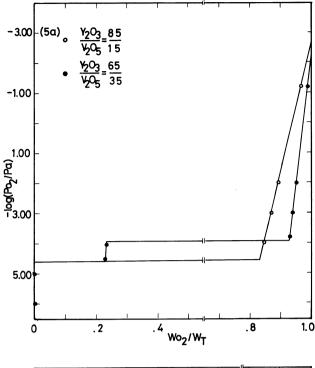


Fig. 4. Phase equilibria in the ${\rm Tb_2O_3-V_2O_3-V_2O_5}$ system at 1200°C. Numerical values in the three-phase regions are the oxygen partial pressure in $-\log{(P_{\rm O_2}/{\rm Pa})}$ in equilibrium. Symbols are the same as those in Table 3.


was not found in the present system.

Compounds A" and YVO₄ have nonstoichiometric compositions, and composition vs. log Po₂ for A" is also tabulated in Table 2. The relation for YVO₄ could not determined because the non-stoichiometric range is too narrow. Levin's report¹⁶ regarding the pseudobinary of Y₂O₃-YVO₄ described above might imply the nonstoichiometry of 4Y₂O₃·V₂O₅ and YVO₄.

Using the thermogravimetry results and the phase identification, a phase diagram at 1200 °C was drawn and is shown in Fig. 6. This diagram is a popular type and has one ternary compound, Ln₂O₃/V₂O₅= 4/1, in the Ln₂O₃-LnVO₄ subsystem. This diagram is similar to those of Dy₂O₃, Ho₂O₃, and Er₂O₃.

The activities of each components in a solid-solution were calculated using the Gibbs-Duhem equation and applying the relation between N_0/N_x and log P_{0z} obtained above. The detailed method of the calculation has been discussed in a paper by Kimizuka and Katsura. The results of the calculation are tabulated in Table 3 together with a composition of the compounds obtained by thermogravimetry, symbols of compounds, and the stability ranges of the compounds in terms of log P_{0z} . The activity of the PrVO₃ component at the composition O₂ was chosen as unity. The activity of the PrVO₃ component at the composition O₃ was not determined.

The lattice constants of the compounds A, A', and A" were successfully determined with the data of the assignment of $4\text{Tm}_2\text{O}_3 \cdot \text{V}_2\text{O}_5^{29}$ although errors were still large compared with the data of others. The values of the lattice constant of LnVO₃ and LnVO₄

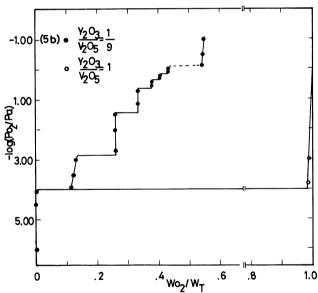


Fig. 5. The relationship between $-\log(P_{O_2}/\text{Pa})$ and the composition, W_{O_2}/W_{T} , of samples. (5a) $\bigcirc: Y_2O_3/V_2O_5=85/15$, $\bullet: Y_2O_3/V_2O_5=65/35$, (5b) $\bullet: Y_2O_3/V_2O_5=1/9$, $\bigcirc: Y_2O_3/V_2O_5=1$.

were also determined by the powder X-ray diffractometer and tabulated in Table 4 together with previous values. The ternary compounds which were made in the different conditions of the oxygen partial pressure show no considerable difference in lattice constant. Instrumental errors were calibrated by measuring the diffraction angles of a standard specimen of silicon.

Calculation of the Standard Gibbs Energies of Reactions. On the basis of the established phase diagrams, the standard Gibbs energies of the reactions which are

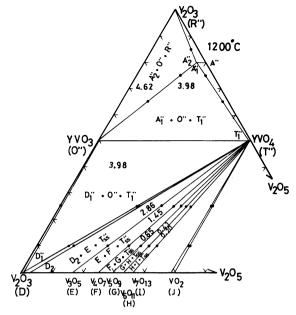


Fig. 6. Phase equilibria in the Y₂O₃-V₂O₃-V₂O₅ system at 1200 °C. Numerical values in the three-phase regions are the oxygen partial pressure in $-\log(P_{\rm O_2}/P_{\rm a})$ in equilibrium. Symbols are the same as those in Table 3.

found in the phase diagrams can be calculated by the equation, $\Delta G^{\circ} = -RT$ ln K, where the R is the gas constant, the T the absolute temperature, and the K the equilibrium constant of a reaction. Reactions and ΔG° values calculated are shown in Table 5 together with the oxygen partial pressures The activities necessary for the in equilibrium. calculation are shown in Table 3. The standard state can be arbitrarily chosen and, as described above, the activity of the PrVO₃ component at the composition O₂ was chosen as unity in this If the standard state are changed to that of the PrVO₃ component at the composition O₃, the ΔG° values for the reaction (3) is 127.2 kJ. The difference in ΔG° values is about 2 kJ.

The Relationship between ΔG° and Ionic Radius. In a previous report,7) the relationship between the ΔG° value for the reaction, LnVO₃+1/2 O₂=LnVO₄, and the ionic radius of lanthanoid elements in 8 coordination had been shown graphically. According to the result, the lanthanoid group is divided into two groups and the relation is linear within each After the report⁷⁾ was published, the of groups. values for Eu, Yb, Dy, and Ho systems have also been confirmed to fit well to the previous linear relation. The present values are plotted in Fig. 7 with open circles together with solid circles of the previous data. The present values for Pr and Tb fit well to the previous line, but the value for Y is widely different from what was anticipated. reason for this difference could not be elucidated. Perhaps it might be one of the reasons why Y

has no property similar to lanthanoid contraction.

In the series of this study, a reaction, $3Ln_2O_3+2LnVO_3+O_2=4Ln_2O_3 \cdot V_2O_5(Ln_8V_2O_{17})$, is often found although $0.81Ln_2O_3 \cdot 0.19V_2O_5$ is stable instead of $4Ln_2O_3 \cdot V_2O_5$ for La, Nd, Pr, Eu, Gd, and Tb. As

described above, the composition $0.81Ln_2O_3 \cdot 0.19V_2O_3$ is still unplausible and questionable, but the oxygen partial pressure in equilibrium with Ln_2O_3 , $LnVO_3$, and $4Ln_2O_3 \cdot V_2O_5$ or $0.81Ln_2O_3 \cdot 0.19V_2O_5$ are valid within experimental errors. Thus, the relation be-

Table 3. Compositions, symbols, stability ranges in the oxygen partial pressures, and activities of the solid solutions

Component	Composition	Symbol	$-\log(P_{\rm O_2}/{ m Pa})$	$-\log a_i$
Pr _{1.62} V _{0.38} O _{3.38}	Pr _{1.62} V _{0.38} O _{3.33}	A_3	6.75	0
	$Pr_{1.62}V_{0.38}O_{3.34}$	$\mathbf{A_2}$	4.56	0.045
	$Pr_{1.62}V_{0.38}O_{3.37}$	$\mathbf{A_1}$	$-1.20(\mathbf{CO_2})$	0.116
Pr ₃ VO ₇	$Pr_3VO_{6.94}$	$\mathbf{B_3}$	4.56	0
	$Pr_3VO_{6.95}$	$\mathbf{B_2}$	4.14	0.0116
	$Pr_3VO_{6.999}$	$\mathbf{B_1}$	-1.20	0.0831
$PrVO_3$	$\mathrm{PrVO}_{3.07}$	O_3	4.02	Not determined
	$\mathrm{PrVO_{3.02}}$	O_2	4.14	0
	$PrVO_{3.01}$	O_1	4.56	3.35×10^{-3}
	$\mathrm{PrVO_{3.00}}$	Ο	$6.75-7.50^{a}$	3.36×10^{-3}
${ m Tb_{1.62}V_{0.38}O_{3.38}}$	${ m Tb_{1.62}V_{0.38}O_{3.33}}$	A_3'	5.27	0
	${ m Tb_{1.62}V_{0.38}O_{3.34}}$	$\mathbf{A_{2}'}$	3.95	0.0318
	${ m Tb_{1.62}V_{0.38}O_{3.38}}$	A_i'	-1.20	0.0951
TbVO ₃	$\mathrm{TbVO_{3.00}}$	O′	$3.95-7.50^{a}$	0
TbVO ₄	$\mathrm{TbVO_{3.98}}$	$\mathbf{T_{2}'}$	3.95	0
	$TbVO_{4.00}$	T_i'	-1.20	0.0138
$Y_8V_2O_{17}$	$Y_8V_2O_{16.59}$	$\mathbf{A_{2}^{\prime\prime}}$	4.62	0
	$\mathbf{Y_8V_2O_{16.65}}$	$\mathbf{A_{i}^{\prime\prime}}$	3.98	0.125
	$Y_8V_2O_{17.00}$	A''	-2.004.32	0.679

a) This value is the lowest oxygen partial pressure in the present experiment. PrVO₃, TbVO₃, and YVO₃ may be stable in the lower oxygen partial pressure range than this value.

TABLE 4. UNIT CELL DIMENSIONS OF COMPOUNDS

Sample	$-\log(P_{\rm O_2}/{\rm Pa})$	a/Å	b/Å	c/Å	β /°	$V/{ m \AA}^3$	Ref.
PrVO ₄	-1.20	7.363 ± 0.001		6.464 ± 0.001		350.5 ± 0.1	Present
	3.50	7.364 ± 0.001		6.465 ± 0.001		350.6 ± 0.1	Present
		7.364 ± 0.002		6.465 ± 0.003			17)
PrVO ₃	5.00 ^{a)}	5.470 ± 0.004	5.531 ± 0.004	7.763 ± 0.004		234.9 ± 0.3	Present
	7.50	5.472 ± 0.009	5.561 ± 0.009	7.779 ± 0.010		236.7 ± 0.6	Present
		5.472 ± 0.003	5.529 ± 0.003	7.774 ± 0.003		235.2 ± 0.1	19)
		5.487	5.562	7.751			31)
Α	-1.20	11.01 ± 0.05	8.92 ± 0.04	16.70 ± 0.22	99.4 ± 0.5	1618 ± 24	Present
	6.50	11.01 ± 0.06	8.91 ± 0.05	$16.67. \pm 0.24$	99.3 ± 0.6	1615 ± 25	Present
$TbVO_4$	-1.20	7.183 ± 0.002		6.332 ± 0.002		326.7 ± 0.2	Present
		7.179 ± 0.003		6.324 ± 0.003			30)
TbVO ₃	5.00	5.334 ± 0.001	5.610 ± 0.001	7.627 ± 0.001		228.2 ± 0.1	Present
		5.325 ± 0.002	5.606 ± 0.002	7.614 ± 0.002		227.3 ± 0.05	19)
A'	-1.20	10.71 ± 0.04	8.45 ± 0.06	15.80 ± 0.11	97.9 ± 0.3	1433 ± 15	Present
	5.00	10.70 ± 0.10	8.67 ± 0.07	15.30 ± 0.20	94.7 ± 0.7	1410 ± 28	Present
YVO_4	-4.32	7.115 ± 0.012		6.327 ± 0.013		320 ± 1	Present
		7.119		6.290			16)
YVO_3	6.00	5.282 ± 0.002	5.589 ± 0.002	7.576 ± 0.002		223.6 ± 0.2	Present
		5.274 ± 0.002	5.590 ± 0.002	7.574 ± 0.002		223.3 ± 0.05	19)
		5.284	5.605	7.587			31)
A''	-4.32	10.52 ± 0.06	8.32 ± 0.03	15.78 ± 0.13	97.6 ± 0.5	1369 ± 14	Present
	4.00	10.70 ± 0.07	8.37 ± 0.07	15.83 ± 0.25	98.9 ± 0.7	1402 ± 27	Present

a) This sample, which has a starting mole ratio Pr₂O₃/V₂O₅=4/6, coexists with V₂O₃.

Table 5. The standard gibbs energies of reactions

	Reaction	$-\log(P_{\rm O_2}/{\rm Pa})$	$-\Delta G^{\circ}/\mathrm{kJ}$
(1)	$31/50 Pr_2O_3 + 19/50 PrVO_3 + 19/100O_2 = Pr_{1.62}V_{0.38}O_{3.38}$	6.75 ± 0.08	62.9 ± 1.0
(2)	$50/31 Pr_{1.62} V_{0.38} O_{3.38} + 12/31 Pr VO_3 + 6/31 O_2 = Pr_3 VO_7$	4.56 ± 0.05	50.1 ± 0.5
(3)	$PrVO_3 + 1/2O_2 = PrVO_4$	4.14 ± 0.03	128.9 ± 0.5
(4)	31/50Tb ₂ O ₃ + $19/50$ TbVO ₃ + $19/100$ O ₂ = Tb _{1.62} V _{0.38} O _{3.38}	5.27 ± 0.03	55.0 ± 1.0
(5)	$TbVO_3 + 1/2O_2 = TbVO_4$	3.95 ± 0.03	126.2 ± 0.5
(6)	$3Y_2O_3 + 2YVO_3 + O_2 = Y_8V_2O_{17}$	4.62 ± 0.02	271 ± 1
(7)	$YVO_3 + 1/2O_2 = YVO_4$	3.98 ± 0.02	126.6 ± 0.5

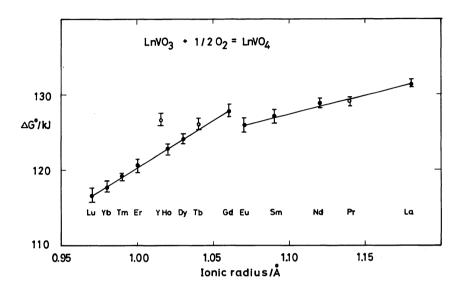


Fig. 7. The relationship between the ionic radius of lanthanoid elements in 8 coordination and the ΔG° values of reaction, $LnVO + 1/2O_2 = LnVO_4$.

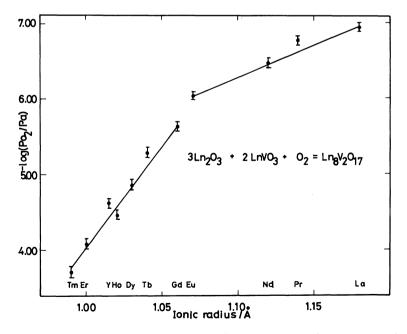


Fig. 8. The relationship between the ionic radius of lanthanoid elements in 8 coordination and the ΔG° values of reaction, $3 \text{Ln}_2 \text{O}_3 + 2 \text{Ln} \text{VO}_3 + \text{O}_2 = \text{Ln}_8 \text{V}_2 \text{O}_{17}$.

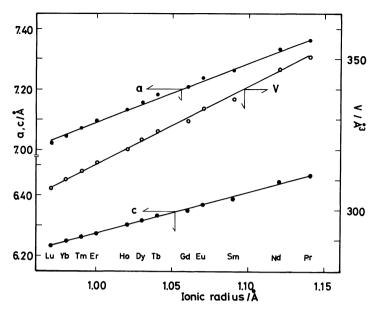


Fig. 9. Variations of the lattice parameter and the volume of LnVO₄ with Ln³⁺ radius (Å) in 8 coordination.

tween the oxygen partial pressure and the ionic radius of elements in the 8 coordination is plotted in Fig. 8. Comparing this with the previous case, the points are in a less linear fashion, but the same trend appears; that is, the lanthanoid elements are divided into two groups and in each group the relation is nearly linear.

Variations with Lattice Parameters with Ionic Radius. The lattice parameters and the volumes of LnVO₄ with a zircon structure are plotted as a function of the ionic radius in the 8 coordination in Fig. 9. Lattice parameters for other compounds have already been presented. $^{1-9)}$ A smooth decreases in the a, c, and V values with atomic number is noted as would be expected from the lanthanoid contraction. The relation between lattice parameters and volumes of LnVO3 and the ionic radius in 12 coordination is shown in Fig. 10. The a, c, and Vvalues decrease with increasing atomic number and these values seem to form a gap at Gd. On the other hand, the b values show a gentle curve with a maximum near the intermeadiate atomic number. These characteristics were already pointed out by McCarthy et al. 19)

Classification of the Phase Diagram Pattern. According to a study of this series, systems at 1200 °C could be clssified into six groups with respect to the assemblages of ternary compounds. The La₂O₃-V₂O₃-V₂O₅ system belongs to the A-type in which three ternary compounds are stable in the Ln₂O₃-LnVO₄ subsystem, the (Pr and Nd)₂O₃-V₂O₃-V₂O₅ systems belong to the B-type in which two ternary compound, 0.8lLn₂O₃·0.19V₂O₅ and Ln₃VO₇, are stable in the subsystem, the (Sm, Eu, Gd, Tb, Dy, Ho, and Er)₂O₃-V₂O₃-V₂O₅ systems belong to the C-type in which one ternary compound, 4Ln₂O₃.

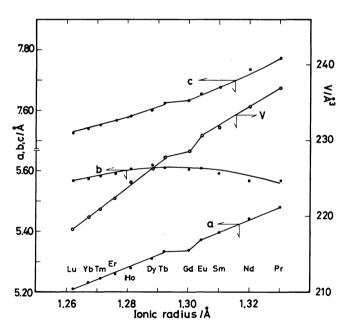


Fig. 10. Variations of the lattice parameter and the volume of LnVO₃ with Ln³⁺ radius (Å) in 12 coordination.

 V_2O_5 or $0.8lLn_2O_3\cdot 0.19V_2O_5$ or $5Ln_2O_3\cdot V_2O_5$, is stable in the subsystem, the $Tm_2O_3-V_2O_3-V_2O_5$ system belongs to the D-type in which two ternary compounds, $4Tm_2O_3\cdot V_2O_5$ and $Tm_7V_3O_{16}$, are stable, the $Yb_2O_3-V_2O_3-V_2O_5$ system belongs to the E-type in which one compound $Yb_7V_3O_{16}$ is stable, and the $Lu_2O_3-V_2O_3-V_2O_5$ system belongs to the F-type in which three ternary compounds, $Lu_7V_3O_{16}$, $Lu_2V_2O_7$, and LuV_4O_8 , are stable.

It would be interesting to know whether the ternary compound assemblages change or not upon changing the experimental temperature.

References

- 1) K. Kitayama and T. Katsura, Bull. Chem. Soc. Jpn., 50, 889 (1977).
- 2) K. Kitayama and T. Katsura, Bull. Chem. Soc. Jpn., 51, 1358 (1978).
- 3) K. Kitayama, T. Sugihara, and T. Katsura, *Bull. Chem. Soc. Jpn.*, **52**, 458 (1979).
- 4) K. Kitayama and T. Katsura, Bull. Chem. Soc. Jpn., 55, 1820 (1982).
- 5) K. Kitayama, D. Zoshima, and T. Katsura, *Bull. Chem. Soc. Jpn.*, **56**, 689 (1983).
- 6) K. Kitayama, C. Mizokuchi, and T. Katsura, Bull. Chem. Soc. Jpn., 56, 695 (1983).
- 7) K. Kitayama and T. Katsura, Bull. Chem. Soc. Jpn., 56, 1084 (1983).
- 8) K. Kitayama, H. Sou, and T. Katsura, Bull. Chem. Soc. Jpn., 56, 3415 (1983).
- 9) K. Kitayama and T. Katsura, Bull. Chem. Soc. Jpn., 57, 1222 (1984).
- 10) R. L. Martin, Nature, 165, 202 (1950).
- 11) R. Ferguson, E. D. Guth, and L. Eyring, *J. Am. Chem. Soc.*, **76**, 3890 (1954).
- 12) R. P. Turcotte, J. M. Warmkessel, R. J. D. Tilley, and L. Eyring, J. Solid State Chem., 3, 265 (1971).
- 13) E. D. Guth and L. Eyring, J. Am. Chem. Soc., 76, 5242 (1954).
- 14) N. C. Baenziger, H. A. Eick, H. Schulett, and L. Eyring, J. Am. Chem. Soc., 83, 2219 (1961).

- 15) T. Sugihara, Theses, Tokyo Institute of Technology 1978.
- 16) E. M. Levin, J. Am. Ceram. Soc. 50, 381 (1967).
- 17) H. Brusset, F. Madaule-Aubry, B. Blanck, J. P. Glaziou, and J. P. Laude, Can. J. Chem., 49, 3700 (1971).
- 18) T. Shinike, G. Adachi, and J. Shiokawa, Nippon Kagaku Kaishi, 1974, 1038.
- 19) G. J. McCarthy, C. A. Sipe, and K. E. McIlvried, *Mat. Res. Bull.*, **9**, 1279 (1974).
- 20) T. Shinike, G. Adachi, and J. Shiokawa, Denki Kagaku, 48, 258 (1980).
- 21) J.C.P.D.S. Card, No. 6-410.
- 22) J.C.P.D.S. Card, No. 23-1418.
- 23) T. Katsura and H. Hasegawa, Bull. Chem. Soc. Jpn., 40, 561 (1967).
- 24) T. Katsura and A. Muan, Trans. AIME, 230, 77 (1964).
- 25) N. Kimizuka and T. Katsura, J. Solid State Chem., 13, 176 (1975).
- 26) N. Kimizuka and T. Katsura, J. Solid State Chem., 15, 151 (1975).
- 27) N. Kimizuka and T. Katsura, Bull. Chem. Soc. Jpn., 47, 1801 (1974).
- 28) S. S. Kiparisov, R. A. Belyaev, V. V. Bondarenko, and V. P. Vyskubov, *Izv. Akad. Nauk SSSR*, *Neorg. Mat.*, **9**, 68 (1973).
- 29) H. Brusset, R. Mahe, and J. P. Laude, *Bull. Soc. Chim. Fr.*, 495 (1973).
- 30) H. Schwartz, Z. Anorg. Allgem. Chem., 323, 44 (1963).
- 31) B. Reuter, Col. Inst. C.N.R.S., 1053 (1965).
- 32) J.C.P.D.S. Card, No. 17-341.